1. One important assumption in linear regression is that the error term e (see Lecture 9) follows a normal distribution. To check whether this assumption is valid, one can perform the linear regression first and look at the residuals of the linear regression.

 (a) As in Question 1 of Assignment 7, perform linear regression analysis on the data father.son using father’s height as predictor and son’s height as response.

 (b) Get the residuals of the linear regression and plot the QQ plot of the residuals. Do these residuals look like following normal distribution?

 (c) Other than the QQ plot, Shapiro’s test can be used to test the normality of the data. Perform Shapiro’s test on the residuals and report the p-value. What conclusion can you draw from the test? (Hint: use the function `shapiro.test` in R to perform Shapiro’s test.)

2. We use simulation to compare p-value, FWER and FDR.

 (a) Generate 1000 values from the normal distribution $\mathcal{N}(2, 1)$, 9000 values from the standard normal distribution $\mathcal{N}(0, 1)$ and record these 10,000 values in a vector x.

 (b) For each of the 10,000 observation, perform a z-test to see if its expected mean is 0 or not (null hypothesis: the expected mean is 0; alternative hypothesis: the expected mean is larger than 0).

 (c) At the significance level $\alpha = 0.05$, how many true positives, false positives, and false negatives do you get? What is the type I error rate, type II error rate, and FDR?

 (d) Use the Bonferroni method to control for the FWER to be less than 0.05. Report the statistics as in (c) and compare them.

 (e) Use the Benjamini-Hochberg method to control for the FDR to be less than 0.05. Repeat the same analysis as in (d).