
BMI 713: Computational Statistics for Biomedical Sciences

Lab: Working with data files

October 14, 2010

Data frames

Data frames are generalizations of matrices. Unlike a matrix, which can only store data of a single type
(e.g., strings, numbers, and booleans), data frames can store many types of data in the same object.

To create a new data frame, use the data.frame function. The function takes one or more vectors
v1, v2, . . . , vn of the same length and creates a data frame whose columns are v1, v2, . . . , vn. For example1

> x

[1] 6 8 19 21 17

> y

[1] FALSE TRUE FALSE FALSE FALSE

> z

[1] "t" "l" "e" "n" "l"

> df <- data.frame(x, y, z, stringsAsFactors=FALSE)

> df

x y z

1 6 FALSE t

2 8 TRUE l

3 19 FALSE e

4 21 FALSE n

5 17 FALSE l

As we can see, df remembers the names of the variables that were used to create each column; df’s columns
are thus named x, y and z. Different names can be specified when data.frame is called:

> df <- data.frame(Number=x, Truth=y, Code=z, stringsAsFactors=FALSE)

> df

Number Truth Code

1 6 FALSE t

2 8 TRUE l

3 19 FALSE e

4 21 FALSE n

5 17 FALSE l

Row and column names can be changed after the data frame is created by using rownames and colnames:

> colnames(df)

[1] "Number" "Truth" "Code"

> colnames(df) <- c("A", "B", "C")

> df

A B C

1 6 FALSE t

2 8 TRUE l

3 19 FALSE e

4 21 FALSE n

5 17 FALSE l

1Here we set the stringsAsFactors parameter to FALSE. If this is not set, then any column of strings will be transformed

into a column of factors. Despite the similarity between the two types of data, factors and strings often behave very differently;

accidently using a factor in place of a string can produce very confusing results. We will always use this option when working

with data frames.

1

Similar to a matrix, the [] operators can be used to select rows and columns from a data frame.

> df[1,]

A B C

1 6 FALSE t

Note that the result of selecting row 1 from df has produced another data frame—not a vector like one
would expect from a matrix. On the other hand, selecting a column produces a vector:

> df[,1]

[1] 6 8 19 21 17

In addition to the square brackets, a convenience operator $ can be used to select columns from a data frame
by name. For example,

These two commands are equivalent

> df$A # Select the column named "A"

[1] 6 8 19 21 17

> df[,1] # Select column number 1

[1] 6 8 19 21 17

Reading and writing data

.RData files

.RData files are an R-specific storage format for storing R variables. Unlike other file reading functions we will
see, load creates variables in the workspace without requiring the assignment operator (<-). For example,
if we have vectors x, y and z:

> x

[1] 6 8 19 21 17

> y

[1] FALSE TRUE FALSE FALSE FALSE

> z

[1] "t" "l" "e" "n" "l"

we can save them to an .RData file with

> save(x, y, z, file="xyz.RData")

Now the variables x, y and z can be loaded into a different R instance with load:

> ls()

character(0) # A new R instance has been started

> load("xyz.RData")

> ls() # Now variables x, y and z exist...

[1] "x" "y" "z"

> x # ...and have the same values as before.

[1] 6 8 19 21 17

> y

[1] FALSE TRUE FALSE FALSE FALSE

> z

[1] "t" "l" "e" "n" "l"

For example, when R saves your workspace, it creates an .RData file by invoking save.image. While these
storage formats are very convenient for R users, they are certainly not ideal for general analysis.

2

Delimited text files

Delimited text files are a very common data storage format. Typically one or more data tables are stored
one row per line in plain, human readable text. Each line is split into columns by a special symbol called
the delimiter. One common format is the comma-separated values (.csv) format, in which the delimiter is
the comma ,.

To write a data frame or matrix in delimited, plain text format to a file, one can use write.table. This
function will create a delimited text file whose format will vary depending on the parameters to write.table.
To write the df data frame to file, we might use:

> write.table(df, file="df.txt")

The contents of the file df.txt are now

"x" "y" "z"

"1" 6 FALSE "t"

"2" 8 TRUE "l"

"3" 19 FALSE "e"

"4" 21 FALSE "n"

"5" 17 FALSE "l"

Notice that the delimiter in this case is a space. Also notice that the row and column names of the data.frame
have been written. We can, for example, opt to change the delimiter and exclude row names by using:

> write.table(df, file="df.txt", sep=",", row.names=FALSE)

The file df.txt now contains

"x","y","z"

6,FALSE,"t"

8,TRUE,"l"

19,FALSE,"e"

21,FALSE,"n"

17,FALSE,"l"

write.table supports a number of different parameters; see ?write.table for reference.
To read data from a delimited text file into R, we may use read.table. Its parameters are very similar

to write.table—see ?read.table for reference.

> df2 <- read.table("df.txt", header=TRUE, sep=",")

> df2

x y z

1 6 FALSE t

2 8 TRUE l

3 19 FALSE e

4 21 FALSE n

5 17 FALSE l

To read data from df.txt, it is important to specify the correct delimiter (in this example, a comma). We
also specified header=TRUE to force R to treat the first line of the file as column names rather than data in
the table. The value returned by read.table is a data frame.

3

