|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
For the last column, 'S' and 'E' indicate that the algorithm has a step for smoothing and estimation, respectively. Three methods (Quantreg, Wavelet, and Lowess) are for smoothing only. Some methods or packages did not have specific names; others had names that are too generic. We have created short abbreviations in such cases (e.g., we have called the method in Picard et al. (2005) based on the name of their downloadable file). These names are used in the subsequent figures. * indicates those using existing R packages: Quantreg and Wavelet methods were implemented by us based on the descriptions given in the papers; Lowess is our implementatino using the existing R function. CGHseg was ported to R from MATLAB by us.
Higher resolution version in PDF: Figure 1,
Figure 2,
Figure 3,
Figure 4
Frequently Asked Questions
Bibliography Autio, R., Hautaniemi, S., Kauraniemi, P., Yli-Harja, O., Astola, J., Wolf, M. and Kallioniemi, A. (2003) CGH-Plotter: MATLAB toolbox for CGH-data analysis. Bioinformatics, 19, 1714–1715. Brennan, C., Zhang, Y., Leo, C., Feng, B., Cauwels, C., Aguirre, A. J., Kim, M., Protopopov, A. and Chin, L. (2004) High-resolution global profiling of genomic alterations with long oligonucleotide microarray. Cancer Res, 64, 4744–4748. Daruwala, R.-S., Rudra, A., Ostrer, H., Lucito, R., Wigler, M. and Mishra, B. (2004) A versatile statistical analysis algorithm to detect genome copy number variation. Proc Natl Acad Sci U S A, 101, 16292–16297. Eilers, P. H. C. and de Menezes, R. X. (2005) Quantile smoothing of array CGH data. Bioinformatics, 21, 1146–1153. Fridlyand, J., Snijders, A. M., Pinkel, D., Albertson, D. G. and Jain, A. (2004) Hidden Markov models approach to the analysis of array CGH data. Journal of Multivariate Analysis, 90, 132–153. Hsu, L., Self, S. G., Grove, D., Randolph, T., Wang, K., Delrow, J. J., Loo, L. and Porter, P. (2005) Denoising array-based comparative genomic hybridization data using wavelets. Biostatistics, 6, 211–226. Hupe, P., Stransky, N., Thiery, J.-P., Radvanyi, F. and Barillot, E. (2004) Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics, 20, 3413–3422. Jong, K., Marchiori, E., Meijer, G., Vaart, A. V. D. and Ylstra, B. (2004) Breakpoint identification and smoothing of array comparative genomic hybridization data.Bioinformatics, 20, 3636–3637. Jong, K., Marchiori, E., van der Vaart, A., Ylstra, B., Meijer, G. and Weiss, M. (2003) Chromosomal breakpoint detection in human cancer. In Lecture Notes in Computer Science, volume 2611. Springer. Lingjaerde, O. C., Baumbusch, L. O., Liestol, K., Glad, I. K. and Borresen-Dale, A.-L. (2005) CGH-Explorer: a program for analysis of array-CGH data. Bioinformatics, 21, 821–822. Lucito, R., Healy, J., Alexander, J., Reiner, A., Esposito, D., Chi, M., Rodgers, L., Brady, A., Sebat, J., Troge, J., West, J. A., Rostan, S., Nguyen, K. C. Q., Powers, S., Ye, K. Q., Olshen, A., Venkatraman, E., Norton, L. and Wigler, M. (2003) Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res, 13, 2291–2305. Myers, C. L., Dunham, M. J., Kung, S. Y. and Troyanskaya, O. G. (2004) Accurate detection of aneuploidies in array CGH and gene expression microarray data. Bioinformatics, 20, 3533–3543. Olshen, A. B. and Venkatraman, E. S. (2002) Change-point analysis of array-based comparative genomic hybridization data. In American Statistical Association Proceedings of the Joint Statistical Meetings, pp. 2530–2535. American Statistical Association, Alexandria, VA. Olshen, A. B., Venkatraman, E. S., Lucito, R. and Wigler, M. (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics, 5, 557–572. Picard, F., Robin, S., Lavielle, M., Vaisse, C. and Daudin, J.-J. (2005) A statistical approach for array CGH data analysis. BMC Bioinformatics, 6, 27. Polzehl, J. and Spokoiny, V. (2000) Adaptive weights smoothing with applications to image restoration. J. R. Statist. Soc. B, 62, Part 2, 335–354. Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., Maner, S., Massa, H., Walker, M., Chi, M., Navin, N., Lucito, R., Healy, J., Hicks, J., Ye, K., Reiner, A., Gilliam, T. C., Trask, B., Patterson, N., Zetterberg, A. and Wigler, M. (2004) Large-scale copy number polymorphism in the human genome. Science, 305, 525–528. Solinas-Toldo, S., Lampel, S., Stilgenbauer, S., Nickolenko, J., Benner, A., Dohner, H., Cremer, T. and Lichter, P. (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer, 20, 399–407. Wang, P., Kim, Y., Pollack, J., Narasimhan, B. and Tibshirani, R. (2005) A method for calling gains and losses in array CGH data. Biostatistics, 6, 45–58. Please direct your questions to Peter J. Park.
|