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Supplementary Methods    

Preprocessing of ChIP-seq data 

Raw sequences were aligned to their respective genomes (hg19 for human; dm3 for fly; and 

ce10 for worm) using bowtie28 or BWA29 following standard preprocessing and quality 

assessment procedures of ENCODE and modENCODE6. Validation results of the antibodies 

used in all ChIP experiments are available at the Antibody Validation Database24 

(http://compbio.med.harvard.edu/antibodies/). Most of the ChIP-seq datasets were generated 

by 36 bp (in human and worm), 42 bp (in worm), or 50 bp (in fly and worm) single-end 

sequencing using the Illumina HiSeq platform, with an average of ~20 million reads per 

sample replicate (at least two replicates for each sample). Quality of the ChIP-seq data was 

examined as follows. For all three organisms, cross-correlation analysis was performed, as 

described in the published modENCODE and ENCODE guidelines6. This analysis examines 

ChIP efficiency and signal-to-noise ratio, as well as verifying the size distribution of ChIP 

fragments. The results of this cross-correlation analysis for the more than 3000 

modENCODE and ENCODE ChIP-seq data sets are described elsewhere30. In addition, to 

ensure consistency between replicates in the fly data, we further required at least 80% 

overlap of the top 40% of peaks in the two replicates (overlap is determined by number of bp 

for broad peaks, or by number of peaks for sharp peaks; peaks as determined by SPP31 etc). 

Library complexity was checked for human. For worm, genome-wide correlation of fold 

enrichment values was computed for replicates and a minimum threshold of 0.4 was required. 

In all organisms, those replicate sets that do not meet these criteria were examined by manual 

inspection of browser profiles to ascertain the reasons for low quality and, whenever 

possible, experiments were repeated until sufficient quality and consistency were obtained. 

To enable the cross-species comparisons described in this paper, we have reprocessed all data 

using MACS32. (Due to the slight differences in the peak-calling and input normalization 

steps, there may be slight discrepancies between the fly profiles analyzed here and profiles 

available at the modENCODE data portal (http://data.modencode.org) or modMine 

(http://modmine.org), which redirects to http://intermine.modencode.org). For every pair of 

aligned ChIP and matching input-DNA data, we used MACS33 version 2 to generate fold 

enrichment signal tracks for every position in a genome: 
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macs2 callpeak -t ChIP.bam -c Input.bam -B --nomodel --shiftsize 73 --SPMR -g hs -n ChIP 

macs2 bdgcmp -t ChIP_treat_pileup.bdg -c ChIP_control_lambda.bdg -o ChIP_FE.bedgraph -m FE 

Depending on analysis, we applied either log transformation or z-score transformation. 

Preprocessing of ChIP-chip data 

For the fly data, genomic DNA Tiling Arrays v2.0 (Affymetrix) were used to hybridize ChIP 

and input DNA. We obtained the log-intensity ratio values (M-values) for all perfect match 

(PM) probes: M = log2(ChIP intensity) - log2(input intensity), and performed a whole-

genome baseline shift so that the mean of M in each microarray is equal to 0. The smoothed 

log intensity ratios were calculated using LOWESS with a smoothing span corresponding to 

500 bp, combining normalized data from two replicate experiments. For the worm data, a 

custom Nimblegen two-channel whole genome microarray platform was used to hybridize 

both ChIP and input DNA. MA2C34 was used to preprocess the data to obtain a normalized 

and median centered log2 ratio for each probe. All data are publicly accessible through the 

modENCODE data portal or modMine. 

Preprocessing of GRO-seq data 

Raw sequences of the fly S2 and human IMR90 datasets were downloaded from NCBI Gene 

Expression Omnibus (GEO) using accession numbers GSE2588735 and GSE1351836 

respectively. The sequences were then aligned to the respective genome assembly (dm3 for 

fly and hg19 for human) using bowtie28. After checking for consistency based on correlation 

analysis and browser inspection, we merged the reads of the biological replicates before 

proceeding with downstream analyses. Treating the reads mapping to the positive and 

negative strands separately, we calculated minimally-smoothed signals (by a Gaussian kernel 

smoother with bandwidth of 10 bp in fly and 50 bp in human) along the genome in 10 bp 

(fly) or 50 bp (human) non-overlapping bins. 

Preprocessing of DNase-seq data 

Aligned DNase-seq data were downloaded from the modENCODE data portal and the 

ENCODE UCSC download page (http://encodeproject.org/ENCODE/). Additional 
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Drosophila embryo DNase-seq data were downloaded from37. After confirming consistency, 

reads from biological replicates were merged. We calculated minimally-smoothed signals (by 

a Gaussian kernel smoother with bandwidth of 10 bp in fly and 50 bp in human) along the 

genome in 10 bp (fly) or 50 bp (human) non-overlapping bins. 

Preprocessing of MNase-seq data 

The MNase-seq data were analyzed as described previously38. In brief, tags were mapped to 

the corresponding reference genome assemblies. The positions at which the number of 

mapped tags had a Z-score > 7 were considered anomalous due to potential amplification 

bias. The tags mapped to such positions were discarded. To compute profiles of nucleosomal 

frequency around TSS, the centers of the fragments were used in the case of paired-end data. 

In the case of single-end data, tag positions were shifted by the half of the estimated fragment 

size (estimated using cross-correlation analysis39 toward the fragment 3’-ends and tags 

mapping to positive and negative DNA strands were combined). Loess smoothing in the 11-

bp window, which does not affect positions of the major minima and maxima on the plots, 

was applied to reduce the high-frequency noise in the profiles.  

GC-content and PhastCons conservation score 

We downloaded the 5bp GC% data from the UCSC genome browser annotation download 

page (http://hgdownload.cse.ucsc.edu/downloads.html) for human (hg19), fly (dm3), and 

worm (ce10). Centering at every 5 bp bin, we calculated the running median of the GC% of 

the surrounding 100 bp (i.e., 105 bp in total).  

PhastCons conservation score was obtained from the UCSC genome browser annotation 

download page. Specifically, we used the following score for each species. 

Target species PhastCons scores generated by 
multiple alignments with

URL 

C. elegans (ce10) 6 Caenorhabditis nematode 
genomes 

http://hgdownload.cse.ucsc.edu/goldenPat
h/ce10/phastCons7way/ 

D. melanogaster (dm3) 15 Drosophila and related fly 
genomes 

http://hgdownload.cse.ucsc.edu/goldenPat
h/dm3/phastCons15way/ 

H. Sapiens (hg19) 45 vertebrate genomes http://hgdownload.cse.ucsc.edu/goldenPat
h/hg19/phastCons46way/vertebrate/ 
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Both GC and phastCons scores were then binned into 10 bp (fly and worm) or 50 bp (human) 

non-overlapping bins. 

Genomic sequence mappability tracks 

We generated empirical genomic sequence mappability tracks using input-DNA sequencing 

data. After merging input reads up to 100M, reads were extended to 149 bp which 

corresponds to the shift of 74 bp in signal tracks. The union set of empirically mapped 

regions was obtained. They are available at the ENCODE-X Browser (http://encode-

x.med.harvard.edu/data_sets/chromatin/). 

Coordinates of unassembled genomic sequences 

We downloaded the “Gap” table from UCSC genome browser download page 

(http://hgdownload.cse.ucsc.edu/downloads.html). The human genome contains 234 Mb of 

unassembled regions whereas fly contains 6.3 Mb of unassembled genome. There are no 

known unassembled (i.e., gap) regions in worm. 

Gene annotation 

We used human GENCODE version 10 (http://www.gencodegenes.org/releases/10.html) for 

human gene annotation40. For worm and fly, we used custom RNA-seq-based gene and 

transcript annotations generated by the modENCODE consortium (see Gerstein et al., 

Comparative Analysis of the Transcriptome across Distant Species). 

Worm TSS definition based on capRNA-seq (capTSS) 

We obtained worm TSS definition based on capRNA-seq from Chen et al.23. Briefly, short 5'-

capped RNA from total nuclear RNA of mixed stage embryos were sequenced (i.e., capRNA-

seq) by Illumina GAIIA (SE36) with two biological replicates. Reads from capRNA-seq 

were mapped to WS220 reference genome using BWA29. Transcription initiation regions 

(TICs) were identified by clustering of capRNA-seq reads. In this analysis we used TICs that 

overlap with wormbase TSSs within -199:100bp. We refer these capRNA-seq defined TSSs 

as capTSS in this study.  
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Gene expression data 

Gene expression level estimates of various cell-lines, embryos or tissues were obtained from 

the modENCODE and ENCODE projects (see Gerstein et al., Comparative Analysis of the 

Transcriptome across Distant Species1). The expression of each gene is quantified in terms of 

RPKM (reads per million reads per kilobase). The distribution of gene expression in each cell 

line was assessed and a cut-off of RPKM=1 was determined to be generally a good threshold 

to separate active vs. inactive genes. This definition of active and inactive genes was used in 

the construction of meta-gene profiles. 

Genomic coverage of histone modifications 

To identify the significantly enriched regions, we used SPP R package (ver.1.10)31. The 5'end 

coordinate of every sequence read was shifted by half of the estimated average size of the 

fragments, as estimated by the cross-correlation profile analysis. The significance of 

enrichment was computed using a Poisson model with a 1 kb window. A position was 

considered significantly enriched if the number of IP read counts was significantly higher (Z-

score > 3 for fly and worm, 2.5 for human) than the number of input read counts, after 

adjusting for the library sizes of IP and input, using SPP function 

get.broad.enrichment.cluster. 

Genome coverage in each genome is then calculated as the total number of base pair covered 

by the enriched regions or one or more histone marks. It should be noted that genomic 

coverage reported in Supplementary Fig. 2 refers to percentage of histone mark coverage 

with respective to mappable region. A large portion (~20%) of human genome is not 

mappable based on our empirical criteria. These unmappable regions largely consist of 

unassembled regions, due to difficulties such as mapping of repeats. Furthermore, some 

unmappable regions may be a result of the relatively smaller sequencing depth compared to 

fly and worm samples. Therefore it is expected that empirically determined mappability is 

smaller in human compared to fly and worm.  

Identification and analysis of enhancers 
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We used a supervised machine learning approach to identify putative enhancers among 

DNaseI hypersensitive sites (DHSs) and p300 or CBP-1 binding sites, hereafter referred 

collectively as “regulatory sites”. The basic idea is to train a supervised classifier to identify 

H3K4me1/3 enrichment patterns that distinguish TSS distal regulatory sites (i.e., candidate 

enhancers) from proximal regulatory sites (i.e., candidate promoters). TSS-distal sites that 

carry these patterns are classified as putative enhancers. 

Human DHS and p300 binding site coordinates were downloaded from the ENCODE UCSC 

download page (http://genome.ucsc.edu/ENCODE/downloads.html). When available, only 

peaks identified in both replicates were retained. DHSs and p300 peaks that were wider than 

1 kb were removed. DHS positions in fly cell lines were defined as the 'high-magnitude' 

positions in DNase I hypersensitivity identified by Kharchenko et al11. We applied the same 

method to identify similar positions in DNase-seq data in fly embryonic stage 14 (ES14)37, 

which roughly corresponds to LE stage. Worm MXEMB CBP-1 peaks were determined by 

SPP with default parameters. CBP-1 peaks that were identified within broad enrichment 

regions wider than 1 kb were removed. For fly and human cell lines, DHS and p300 data 

from matching cell types were used. For fly late embryos (14-16 h), the DHS data from 

embryonic stage 14 (10:20–11:20 h) were used. For worm EE and L3, CBP-1 data from 

mixed-embryos were used. 

To define the TSS-proximal and TSS-distal sites, inclusive TSS lists were obtained by 

merging ensemble v66 TSSs with GENCODE version 10 for human, and modENCODE 

transcript annotations for fly and worm, including all alternate sites. Different machine 

learning algorithms were trained to classify genomic positions as a TSS-distal regulatory site, 

TSS-proximal regulatory site or neither, based on a pool of TSS-distal (>1 kb) and TSS–

proximal (<250 bp) regulatory sites and a random set of positions from other places in the 

genome. The random set included twice as many positions as the TSS-distal site set for each 

cell type. Five features from each of the two marks, H3K4me1 and H3K4me3, were used for 

the classification: maximum fold-enrichment within +/-500 bp, and four average fold 

enrichment values in 250 bp bins within +/-500 bp. The pool of positions was split into two 

equal test and training sets. The performance of different classifier algorithms was compared 

using the area under Receiver Operator Characteristics (ROC) curves. For human and fly 
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samples, the best performance was obtained using the Model-based boosting (mboost) 

algorithm41, whereas for the worm data sets, the Support Vector Machine (SVM) algorithm 

showed superior performance. TSS-distal sites that in turn get classified as “TSS-distal” 

make up our enhancer set. In worm, the learned model was used to classify sites within 500-

1000 bp from the closest TSS, and those classified as TSS-distal were included in the final 

enhancer set to increase the number of identified sites. Our sets of putative enhancers 

(hereafter referred to as ‘enhancers’) include roughly 2000 sites in fly cell lines and fly 

embryos, 400 sites in worm embryos, and 50,000 sites in human cell lines. 

It should be noted that while enhancers identified at DHSs (in human and fly) or CBP-1 

binding sites (in worm) may represent different classes of enhancers, for the purpose of 

studying the major characteristics of enhancers, both definitions are a reasonable proxy for 

identifying enhancer-like regions. We repeated all human enhancer analysis with p300 sites 

(worm CBP-1 is an ortholog of p300 in human). Half of the p300-based enhancers overlap 

with DHS-based enhancers (Supplementary Table 3). In addition, all the observed patterns 

were consistent with the enhancers identified using DHSs (Supplementary Fig. 3), including 

the association of enhancer H3K27ac levels with gene expression (Supplementary Figs. 4-6), 

patterns of nucleosome turnover (Supplementary Figs. 7-9) and histone modifications and 

chromosomal proteins (Supplementary Fig. 10). The results based on DHS-based enhancers 

were validated by analyzing p300-based enhancers (Supplementary Fig. 11). 

For Supplementary Fig. 3-6, the enrichment level of a histone mark around a site (DHS or 

CBP-1 enhancer) is calculated based on the maximum ChIP fold enrichment within +/- 500 

bp region of the site. These values are also used to stratify enhancers based on the H3K27ac 

enrichment level. For Supplementary Fig. 10, we extracted histone modification signal +/- 2 

kb around each enhancer site in 50 bp bins. ChIP fold enrichment is then averaged across all 

the enhancer sites in that category (high or low H3K27ac). These average signals across the 

entire sample (e.g., human GM12878) are then subjected to Z-score transformation (mean = 

0, standard deviation = 1). All z-scores above 4 or below -4 are set to 4 and -4 respectively. 

In terms of analysis of average expression of genes that are proximal to a set of enhancers 

(Supplementary Fig. 5), we identify genes that are located within 5, 10, 25, 40, 50, 75, 125, 
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150, 175 and 200 kb away from the center of an enhancer in both directions, and take an 

average of the expression levels of all of the genes within this region.  

Analysis of HiC-defined topological domains 

We used the genomic coordinates of the topological domains defined in the original 

publication on fly late embryos20, and human embryonic stem cell lines19. The human 

coordinates were originally in hg18. We used UCSC's liftOver tool 

(http://genome.ucsc.edu/cgi-bin/hgLiftOver) to convert the coordinates to hg19.  

Analysis of chromatin states near topological domain boundaries 

For each chromatin state, the number of domain boundaries where the given state is at a 

given distance to the boundary is counted. The random expected value of counts is calculated 

as the number of all domain boundaries times the normalized genomic coverage of the 

chromatin state. The ratio of observed to expected counts is presented as a function of the 

distance to domain boundaries. 

Analysis of chromatin states within topological domains 

In supplementary Fig. 39, the interior of topological domains is defined by removing 4 kb 

and 40 kb from the edges of each topological domain for fly and human Hi-C defined 

domains respectively. To access the chromatin state composition of each topological domain, 

the coverage of the domain interior by each chromatin state is calculated in bps and 

normalized to the domain size, yielding a measure between 0 and 1. Then the matrix of 

values corresponding to chromatin states in one dimension and topological domains in the 

second dimension is used to cluster the chromatin states hierarchically. Pearson correlation 

coefficients (1-r) between domain coverage values of different chromatin states are taken as 

the distance metric for the clustering. The clustering tree is cut as to obtain a small number of 

meaningful groups of highly juxtaposed chromatin states. The coverage of each chromatin 

state group is calculated by summing the coverage of states in the group. Each topological 

domain is assigned to the chromatin state group with maximum coverage in the domain 

interior. 
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Definition of lamina associated domains (LADs) 

Genomic coordinates of LADs were directly obtained from their original publications, for 

worm42, fly43 and human44. We converted the genomic coordinates of LADs to ce10 (for 

worm), dm3 (for fly) and hg19 (for human) using UCSC's liftOver tool with default 

parameters (http://genome.ucsc.edu/cgi-bin/hgLiftOver). For Supplementary Fig. 16b, the 

raw fly DamID ChIP values were used after converting the probe coordinates to dm3.  

LAD chromatin context analysis 

In Supplementary Fig. 15, scaled LAD plot, long and short LADs were defined by top 20% 

and bottom 20% of LAD sizes, respectively. For a fair comparison between human and worm 

LADs in the figure, a subset of human LADs (chromosomes 1 to 4, N = 391) was used, while 

for worm LADs from all chromosomes (N= 360) were used. 10 kb (human) or 2.5 kb (worm) 

upstream and downstream of LAD start sites and LAD ending sites are not scaled. Inside of 

LADs is scaled to 60 kb (human) or 15 kb (worm). Overlapping regions with adjacent LADs 

are removed.  

To correlate H3K9me3, H3K27me3 and EZH2/EZ with LADs, the average profiles were 

obtained at the boundaries of LADs with a window size of 120 kb for human, 40 kb for fly 

and 10 kb for worm. The results at the right side of domain boundaries were flipped for 

Supplementary Fig. 16a. 

LAD Replication Timing analysis 

The repli-seq BAM alignment files for the IMR90 and BJ human cell lines were downloaded 

from the UCSC ENCODE website. Early and late RPKM signal was determined for non-

overlapping 50 kb bins across the human genome, discarding bins with low mappability (i.e., 

bins containing less than 50% uniquely mappable positions). To better match the fly repli-seq 

data, the RPKM signal from the two early fractions (G1b and S1) and two late fractions (S4 

and G2) were each averaged together. The fly Kc cell line replication-seq data was obtained 

from GEO. Reads were pooled together from two biological replicates (S1: GSM1015342 

and GSM1015346; S4: GSM1015345 and GSM1015349), and aligned to the Drosophila 

melanogaster dm3 genome using Bowtie28. Early and late RPKM values were then calculated 
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for each non-overlapping 10 kb bin, discarding low mappability bins as described above. To 

make RPKM values comparable between both species, the fly RPKM values were 

normalized to the human genome size. All replication timing bins within a LAD domain were 

included in the analysis. An equivalent number of random bins were then selected, preserving 

the observed LAD domain chromosomal distribution. 

Cell 
Type 

Phase Link 

IMR90 G1b 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwRepliSeq/w
gEncodeUwRepliSeqImr90G1bAlnRep1.bam 

IMR90 S1 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwRepliSeq/w
gEncodeUwRepliSeqImr90S1AlnRep1.bam 

IMR90 S4 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwRepliSeq/w
gEncodeUwRepliSeqImr90S4AlnRep1.bam 

IMR90 G2 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwRepliSeq/w
gEncodeUwRepliSeqImr90G2AlnRep1.bam 

BJ G1b 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwRepliSeq/w
gEncodeUwRepliSeqBjG1bAlnRep2.bam 

BJ S1 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwRepliSeq/w
gEncodeUwRepliSeqBjS1AlnRep2.bam 

BJ S4 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwRepliSeq/w
gEncodeUwRepliSeqBjS4AlnRep2.bam 

BJ G2 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwRepliSeq/w
gEncodeUwRepliSeqBjG2AlnRep2.bam 

 

Analysis of DNA structure and nucleosome positioning 

The ORChID2 algorithm was used to predict DNA shape and generate consensus profiles for 

paired-end MNase-seq fragments of size 146-148 bp as previously described45. Only 146-148 

bp sequences were used in this analysis to minimize possible effect of over- and under-

digestion in the MNase treatment. The ORChID2 algorithm provides a more general 

approach than often-used investigation of mono- or dinucleotide occurrences along 

nucleosomal DNA since it can capture even degenerate sequence signatures if they have 

pronounced structural features. 

For individual sequence analyses, we used the consensus profile generated above and 

trimmed three bases from each end to eliminate edge effects of the prediction algorithm, and 

then scanned this consensus against each sequence of length 146-148 bp. We retained the 
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maximum correlation value between the consensus and individual sequence, and compared 

this to shuffled versions of each sequence (Supplementary Figs. 19-20). To estimate the 

sequence effect on nucleosome positioning we calculated the area between the solid lines and 

normalized by the area between the dashed lines (Supplementary Fig. 20a; upper panel) and 

reported this result in Supplementary Fig. 19b. 

Construction of meta-gene profiles 

We defined transcription start site (TSS) and transcription end site (TES) as the 5' most and 3' 

most position of a gene, respectively, based on the modENCODE/ENCODE transcription 

group’s gene annotation (see Gerstein et al., Comparative Analysis of the Transcriptome 

across Distant Species1). To exclude short genes from this analysis, we only included genes 

with a minimum length of 1 kb (worm and fly) or 10 kb (human). To further alleviate 

confounding signals from nearby genes, we also excluded genes which have any neighboring 

genes within 1 kb upstream of its TSS or 1 kb downstream of its TES. The ChIP enrichment 

in the 1 kb region upstream of TSS or downstream of TES, as well as 500 bp downstream of 

TSS or upstream of TES, were not scaled. The ChIP-enrichment within the remaining gene 

body was scaled to 2 kb. The average ChIP fold enrichment signals were then plotted as a 

heat map or a line plot.  

Analysis of broadly and specifically expressed genes 

For each species, we obtained RNA-seq based gene expression estimates (in RPKM) of 

multiple cell lines or developmental stages from the modENCODE/ENCODE transcription 

groups (see Gerstein et al., Comparative Analysis of the Transcriptome across Distant 

Species1). Gene expression variability score of each gene was defined to be the ratio of 

standard deviation and mean of expression across multiple samples. For each species, we 

divide the genes into four quartiles based on this gene expression variability score. Genes 

within the lowest quartile of variability score with RPKM value greater than 1 is defined as 

"broadly expressed". Similarly, RPKM>1 genes within the highest quartile of variability 

score is defined as "specifically expressed". We further restricted our analysis to protein-

coding genes that are between 1 and 10 kb (in worm and fly) or between 1 and 40 kb (in 

human) in length. 
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For ChIP-chip analysis of BG3, S2 and Kc cells, ChIP signal enrichment for each gene was 

calculated by averaging the smoothed log intensity ratios from probes that fall in the gene 

body. For all other cell types, ChIP-seq read coordinates were adjusted by shifting 73 bp 

along the read and the total number of ChIP and input fragments that fall in the gene body 

were counted. Genes with low sequencing depth (as determined by having less than 4 input 

tags in the gene body) were discarded from the analysis. ChIP signal enrichment is obtained 

by dividing (library normalized) ChIP read counts to Input read count. The same procedure 

was applied to calculate enrichment near TSS of genes, by averaging signals from probes 

within 500 bp of TSSs for BG3 cells and using read counts within 500 bp of TSSs for ChIP-

seq data. 

Genome-wide correlation between histone modifications 

In Extended Data Fig. 1c and Supplementary Fig. 24, eight histone modifications commonly 

profiled in human (H1-hESC,GM12878 and K562), fly (LE, L3 and AH), and worm (EE and 

L3), were used for pairwise genome-wide correlation at 5 kb bin resolution. Unmappable 

regions and regions that have fold enrichment values less than 1 for all 8 marks (low signal 

regions) were excluded from the analysis. To obtain a representative correlation value for 

each species, an average Pearson correlation coefficient for each pair of marks was computed 

over the different cell types and developmental stages of each species. The overall correlation 

(upper triangle of Extended Data Fig. 1c) was computed by averaging the three single-species 

correlation coefficients. Intra-species variance was computed as the average within-species 

variance of correlation coefficients. Inter-species variance was computed as the variance of 

the within-species average correlation coefficients. For the large correlation heatmaps in 

Supplementary Fig. 25, 10 kb (worm and fly) or 30 kb (human) bins were used with no 

filtering of low-signal regions. 

Chromatin segmentation using hiHMM 

We performed joint chromatin state segmentation of multiple species using a hierarchically 

linked infinite hidden Markov model (hiHMM). In a traditional HMM that relies on a fixed 

number of hidden states, it is not straightforward to determine the optimal number of hidden 

states. In contrast, a non-parametric Bayesian approach of an infinite HMM (iHMM) can 
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handle an unbounded number of hidden states in a systematic way so that the number of 

states can be learned from the training data rather than be pre-specified by the user46. For 

joint analysis of multi-species data, the hiHMM model employs multiple, hierarchically 

linked, iHMMs over the same set of hidden states across multiple species - one iHMM per 

species. More specifically, within a hiHMM, each iHMM has its own species-specific 

parameters for both transition matrix ߨሺ௖ሻ and emission probabilities  for c={human, fly, 

worm}. Emission process was modeled as a multivariate Gaussian with a diagonal 

covariance matrix such that  where  represents m-

dimensional vector for observed data from m chromatin marks of species c at genomic 

location t, and  represents the corresponding hidden state at t. The parameters  

correspond to the mean signal values from state k in species c, and  is the species-

specific covariance matrix. To take into account the different self-transition probabilities in 

different species, we also incorporate an explicit parameter  that controls the self-

transition probability. In the resulting transition model, we have 

. Each row of the transition matrix  

across all the species follows the same prior distribution of the so-called Dirichlet process 

that allows the state space to be shared across species. Using this scheme, data from multiple 

species are weakly coupled only by a prior. Therefore hiHMM can capture the shared 

characteristics of multiple species data while still allowing unique features for each 

species. This hierarchically linked HMM has been first applied to the problem of local 

genetic ancestry from haplotype data46 in which the same modeling scheme for the transition 

process but a different emission process has been adopted to deal with the SNP haplotype 

data. 

This hierarchical approach is substantially different from the plain HMM that treats multi-

species data as different samples from a homogeneous population. For example, different 

species data have different gene length and genome composition, so one transition event 

along a chromosome of one species does not equally correspond to one transition in another 

species. So if a model has just one set of transition probabilities for all species, it cannot 
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reflect such difference in self-transition or between-state transition probabilities. Our model 

hiHMM can naturally handle this by assuming species-specific transition matrices. Note that 

since the state space is shared across all the populations, it is easy to interpret the recovered 

chromatin states.  

Since hiHMM is a non-parametric Bayesian approach, we need Markov chain Monte-Carlo 

(MCMC) sampling steps to train a model. Instead of Gibbs sampling, we adopted a dynamic 

programming scheme called Beam sampling47, which significantly improves the mixing and 

convergence rate. Although it still requires longer computation time than parametric methods 

like a finite-state HMM, this training can be done once offline and then we can approximate 

the decoding step of the remaining sequences by Viterbi algorithm using the trained HMM 

parameters. 

ChIP-seq data were further normalized before being analyzed by hiHMM. ChIP-seq 

normalized signals were averaged in 200 bp bins in all three species. MACS2 processed 

ChIP-seq fold change values were log2 transformed with a pseudocount of 0.5, i.e., 

y=log2(x+0.5), followed by mean-centering and scaling to have standard deviation of 1. The 

transformed fold enrichment data better resemble a Gaussian distribution based on QQ-plot 

analysis. 

To train the hiHMM, the following representative chromosomes were used: 

● Worm (L3): chrII, chrIII, chrX 

● Fly (LE and L3): chr2L, chr2LHet, chrX, chrXHet 

● Human (H1-hESC and GM12878): chr1, chrX 

It should be noted that H4K20me1 profile in worm EE is only available as ChIP-chip data. 

This is why worm EE was not used in the training phase. In the inference phase, we used the 

quantile-normalized signal values of the H4K20me1 EE ChIP-chip data. 

One emission and one transition probability matrix was learned from each species. We also 

obtained the maximum a priori (MAP) estimate of the number of states, K. We then used 

Viterbi decoding algorithm to generate a chromatin state segmentation of the whole genome 
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of worm (EE and L3), fly (LE and L3) and human (H1-hESC and GM12878). To avoid any 

bias introduced by unmappable regions, we removed the empirically determined unmappable 

regions before performing Viterbi decoding. These unmappable regions are assigned a 

separate “unmappable state” after the decoding. 

The chromatin state definition can be accessed via the ENCODE-X Browser (http://encode-

x.med.harvard.edu/data_sets/chromatin/). 

Chromatin segmentation using Segway 

We compared the hiHMM segmentation with a segmentation produced by Segway48, an 

existing segmentation method. Segway uses a dynamic Bayesian network model, which 

includes explicit representations of missing data and segment lengths.  

Segway models the emission of signal observations at a position using multivariate 

Gaussians. Each label k has a corresponding Gaussian characterized by a mean vector  

and a diagonal covariance matrix . At locations where particular tracks have missing data, 

Segway excludes those tracks from its emission model. For each label, Segway also includes 

a parameter that models the probability of a change in label. If there is a change in label, a 

separate matrix of transition parameters models the probability of switching to every other 

label. Given these emission and transition parameters, Segway can calculate the likelihood of 

observed signal data. To facilitate modeling data from multiple experiments with a single set 

of parameters, we performed a separate quantile normalization on each signal track prior to 

Segway analysis. We took the initial unnormalized values from MACS2’s log-likelihood-

ratio estimates. We compared the value at each position to the values of the whole track, 

determining the fraction of the whole track with a smaller value. We then transformed this 

fraction, using it as the argument to the inverse cumulative distribution function of an 

exponential distribution with mean parameter . We divided the genome into 100 bp 

non-overlapping bins, and took the mean of the transformed values within each bin. We then 

used these normalized and averaged values as observations for Segway in place of the initial 

MACS2 estimates. 

k



 1
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We trained Segway using the Expectation-Maximization algorithm and data from all three 

species: a randomly-sampled 10% of the human genome (with data from H1-hESC and 

GM12878) and the entire fly (LE and L3) and worm (EE and L3) genomes. Using these data 

sets jointly, we trained 10 models from 10 random initializations. In every initialization, we 

set each mean parameter  for label i and track k by sampling from a uniform distribution 

defined in , where is the empirical standard deviation of track k. We placed a 

Dirichlet prior on the self-transition model to make the expected segment length 100 kb. We 

always initialized transition probability parameters with an equal probability of switching 

from one label to any other label. While these parameters changed during training, we 

increased the likelihood of a flatter transition matrix by including a Dirichlet prior of 10 

pseudocounts for each ordered pair of labels. To increase the relative importance of the 

length components of the model, we exponentiated transition probabilities to the power of 3. 

After training converged, we selected the model with the highest likelihood. We then used 

the Viterbi algorithm to assign state labels to the genome in each cell type of each organism. 

Chromatin segmentation using ChromHMM 

We also compared hiHMM with another existing segmentation method called 

ChromHMM49. ChromHMM uses a hidden Markov model with multivariate binary 

emissions to capture and summarize the combinatorial interactions between different 

chromatin marks. ChromHMM was jointly trained in virtual concatenation mode using 8 

binary histone modification ChIP-seq tracks (H3K4me3, H3K27ac, H3K4me1, H3K79me2, 

H4K20me1, H3K36me3, H3K27me3 and H3K9me3) from two developmental stages in 

worm (EE, L3), two developmental stages in fly (LE, L3) and two human cell-lines 

(GM12878 and H1-hESC). The individual histone modification ChIP-seq tracks were 

binarized in 200 bp non-overlapping, genome-wide, tiled windows by comparing the ChIP 

read counts (after shifting reads on both strands in the 5’ to 3’ direction by 100 bp) to read 

counts from a corresponding input-DNA control dataset based on a Poisson background 

model. A p-value threshold of 1e-3 was used to assign a presence/absence call to each 

window (0 indicating no significant enrichment and 1 indicating significant enrichment). 

Bins containing < 25% mappable bases were considered unreliable and marked as ‘missing 

ik

]2.0,2.0[  
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data’ before training. In order to avoid a human-specific bias in training due to the 

significantly larger size of the human genome relative to the worm and fly genomes, the 

tracks for both the worm and fly stages were repeated 10 times each, effectively up-

weighting the worm and fly genomes in order to approximately match the amount of training 

data from the human samples. ChromHMM was trained in virtual concatenation mode using 

expectation maximization to produce a 19 state model which was found to be an optimal 

trade-off between model complexity and interpretability. The 19 state model was used to 

compute a posterior probability distribution over the state of each 200 bp window using a 

forward-backward algorithm. Each bin was assigned the state with the maximum posterior 

probability.  

The states were labeled by analyzing the state-specific enrichment of various genomic 

features (such as locations of genes, transcription start sites, transcription end sites, repeat 

regions etc.) and functional datasets (such as transcription factor ChIP-seq peaks and gene 

expression). For any set of genomic coordinates representing a genomic feature and a given 

state, the fold enrichment of overlap was calculated as the ratio of the joint probability of a 

region belonging to the state and the feature to the product of independent marginal 

probability of observing the state in the genome and that of observing the feature. Similar to 

the observations of hiHMM states, there are 6 main groups of states: promoter, enhancer, 

transcription, polycomb repressed, heterochromatin, and low signal. 

Heterochromatin region identification 

To identify broad H3K9me3+ heterochromatin domains, we first identified broad H3K9me3 

enrichment region using SPP31, based on methods get.broad.enrichment.cluster with a 10 kb 

window for fly and worm and 100 kb for human . Then regions that are less than 10 kb of 

length were removed. The remaining regions were identified as the heterochromatin regions. 

The boundaries between pericentric heterochromatin and euchromatin on each fly 

chromosome are consistent with those from lower resolution studies using H3K9me214 

(Supplementary Fig. 34). 

Genome-wide correlation analysis for heterochromatin-related marks 
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For heterochromatin related marks in Fig. 3b, the pairwise genome-wide correlations were 

calculated with 5 kb bins using five marks in common in the similar way as described above. 

Unmappable regions or regions that have fold enrichment values < 0.75 for all five marks 

were excluded from the analysis. 

Chromatin-based topological domains based on Principal Component Analysis 

We respectively partitioned the fly and worm genomes into 10 kb and 5 kb bins, and assign 

average ChIP fold enrichment of multiple histone modifications to each bin (See below for 

the list of histone modifications used). Aiming to reduce the redundancy induced by the 

strong correlation among multiple histone modifications, we projected histone modification 

data onto the principal components (PC) space. The first few PCs, which cumulatively 

accounted for at least 90% variance, were selected to generate a "reduced" chromatin 

modification profile of that bin. Typically 4-5 PCs were selected in the fly and worm 

analysis. Using this reduced chromatin modification profile, we could then calculate the 

Euclidean distance between every pair of bin in the genome. In order to identify the 

boundaries and domains, we calculated a boundary score for each bin:	

 

in which, dk+i,k is the Euclidean distance between the k+i th bin and the k th bin. If a bin has larger 

distances between neighbors, in principle, it would have a higher boundary score and be recognized as 

a histone modification domain boundary. The boundary score cutoffs are set to be 7 for fly and worm. 

If the boundary scores of multiple continuous bins are higher than the cutoff, we picked the highest 

one as the boundary bin. The histone marks used are H3K27ac, H3K27me3, H3K36me1, H3K36me3, 

H3K4me1, H3K4me3, H3K79me1, H3K79me2, H3K9me2 and H3K9me3 for fly LE and L3, and 

H3K27ac, H3K27me3, H3K36me1, H3K36me3, H3K4me1, H3K4me3, H3K79me1, H3K79me2, 

H3K79me3, H3K9me2 and H3K9me3 for worm EE and L3. 
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Supplementary Fig. 2. Genomic coverage of various histone modifications in the three 
species. Red lines indicate the ten marks analyzed in common in the three species and their 
cumulative coverage. The color bars underneath each plot indicate whether data is available for a 
given histone modification in that sample (K562 in human, L3 in fly and L3 in worm). In all three 
organisms, a large fraction of the assembled and mappable genome is occupied by at least one of 
the profiled histone modifications. For example, after excluding genomic regions that are unas-
sembled or unmappable, the ten histone modifications profiled in at least one cell type or develop-
mental stage of all three organisms display enrichments covering 56% of the human genome, 74% 
of the fly genome, and 92% of the worm genome (see Methods). The higher genomic coverage by 
histone modifications in worms and flies compared to humans is likely related to both the smaller 
genome size (which allows better sequencing coverage) and the higher proportion of protein-
coding regions in the genomes of these organisms.
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Supplementary Fig. 3. H3K4me1/3 enrichment patterns in regulatory elements defined by 
DNase I hypersensitive sites (DHS) or CBP-1 binding sites. ChIP signal enrichment (log2 
scale) of H3K4me3 vs. H3K4me1 at TSS-proximal (<250 bp) and TSS-distal (>1 kb) DHSs 
(blue: human, orange: fly) or CBP-1 binding sites (green: worm). The labels “UW” and “Broad” 
denote, two ENCODE data generation centers: University of Washington and Broad Institute, 
respectively. The median H3K4me3 enrichment values are marked by horizontal dashed lines. 
The numbers (e.g., 1/3.5) on the dashed lines denote the linear fold enrichment of H3K4me3 at 
the median TSS-distal site relative to the median TSS-proximal site (e.g., for UW GM12878 
data, the median TSS-proximal DHS has 32.2 fold higher enrichment than the median TSS-distal 
DHS). To characterize the chromatin features that can distinguish enhancers from promoters, we
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Supplementary Fig. 4. Distribution of H3K27ac enrichment levels at putative enhancers. 
One key observation is that H3K27ac density displays a wide range of enrichment levels at 
enhancers in all three species. This result in human cells is consistent whether using enhancers 
identified as DHSs (solid line) or as p300 binding sites (dashed line). X-axis is log2 ChIP fold 
enrichment of H3K27ac at +/-500 bp of enhancer sites.

compared the enrichment patterns of H3K4me1 and H3K4me3 at TSS-proximal and TSS-distal 
DHSs in human and fly. Since DHS data were not available in worm, we examined the binding 
sites of CBP-1, the worm ortholog of human p300/CBP51. We observe that DHSs (or CBP-1 
sites) generally fall into two clusters for all cell types: those proximal to TSSs constitute a cluster 
with stronger H3K4me3 signal (left column), while those distal to TSSs constitute a cluster 
showing stronger H3K4me1 signals (right column). Although the enrichment levels of 
H3K4me1/3 at these sites vary considerably between cell types, platforms (array vs. sequencing), 
and even different laboratories for the same cell type, these two marks clearly distinguish TSS-
distal sites (enhancers) from TSS-proximal sites (promoters). Here, we define putative enhancer 
 sites to be DHSs (or CBP-1 sites) with the H3K4me1/3 pattern that is characteristic of TSS-distal
 sites, as determined by a supervised machine learning approach (see Methods)
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Supplementary Fig. 5. Relationship of enhancer H3K27ac levels with expression of nearby 
genes. Average expression of genes that are close (vary between 5 to 200 kb) to enhancers with 
high (top 40%; red line) or low (bottom 40%; blue line) levels of H3K27ac in various human, fly 
and worm samples. As a control, we analyzed TSS-distal DHSs (in human and fly) or CBP-1 sites 
(in worm) that are not classified as enhancers (dashed black). RPKM: reads per kilobase per 
million. Error bar: standard error of the mean. The proximity of genes to enhancers with higher 
H3K27ac levels is positively correlated with expression, in a distance-dependent manner. This 
observation is consistent across multiple cell-types and tissues in all three species.
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Supplementary Fig. 6. Correlation of enrichment of 82 histone marks or chromosomal 
proteins at enhancers with STARR-seq defined enhancer strength in fly S2 cells. Histone 
marks or chromosomal proteins whose enrichment is anti-correlated (top bar plot) or positively 
correlated (bottom bar plot) with STARR-seq enrichment level52, which is a proxy for enhancer 
strength based on the ability of ~600 bp DNA fragments to stimulate transcription from an 
associated promoter. All histone lysine acetylation marks, including H3K27ac, show a moderate 
but significant positive correlation with enhancer activity (p<0.01).
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Supplementary Fig. 8. Nucleosome occupancy at enhancers. Average nucleosome density 
profiles were computed for DHS and CBP-1-identified enhancers in human GM12878 cells, fly 
S2 cells, and worm L3. In each case nucleosome occupancy was inferred from MNase-seq data 
obtained for the corresponding or similar cell types54-56. Green dashed lines indicate centers of 
the enhancer regions. In general, nucleosome occupancy is lower in the broad region around 
enhancers (roughly ±2 kb) but with a local (±400 bp) increase at the centers of the enhancers 
(defined by DHS and CBP-1 peaks). This pattern is similar to that reported for non-promoter 
regulatory sequences in the human genome57. In human, this increase is characterized by two 
well-positioned nucleosomes flanking the nucleosome-depleted region at the enhancer center, 
and this feature may be indicative of the presence of relatively unstable nucleosomes (this may 
be occluded by lower resolution in fly and worm).
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Supplementary Fig. 7. Nucleosome turnover at enhancers. ChIP signal enrichment (log
2
 scale) of 

H3.3 around enhancers in human Hela-S3 cells (ChIP-seq) and fly S2 cells (ChIP-chip), which is 
known to be present in regions with higher nucleosome turnover50. We found that the local increase in 
nucleosome occupancy (see Supplemental Fig. 8) indeed overlaps with the peak of H3.3 enrichment, 
and that the levels of H3.3 and H3K27ac enrichment are correlated. These findings, together with the 
specific patterns of nucleosome occupancy53, indicate that increased nucleosome turnover is one of 
the major characteristics of chromatin at active enhancers.
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Supplementary Fig. 9. Salt extracted fractions of chromatin at enhancers. The average 
profiles are shown for the 80 mM (left) and 150-600 mM (right) salt fractions in fly S2 cells58. 
The 80 mM fraction is enriched with easily mobilized nucleosomes and preferentially represents 
accessible, “open” chromatin. The 150-600 mM fraction derives from a 600 mM extraction 
following a 150 mM extraction and therefore is depleted of such nucleosomes, representing more 
compacted, “closed” chromatin. We note that the peak in the 80 mM fraction at enhancers indi-
cates that these loci are enriched in relatively unstable nucleosomes, which is in agreement with 
our observation of increased nucleosome turnover at these sites (see Supplementary Fig. 7).



Supplementary Fig. 10. Chromatin environment described by histone modification and 
binding of chromosomal proteins at enhancers. Z-score of average ChIP fold enrichment of 
some key histone modifications and chromosomal proteins around +/-2 kb of the center of 
enhancers with high H3K27ac or low H3K27ac. Most active histone marks in addition to 
H3K4me1 show stronger enrichment at enhancers with high H3K27ac, including H3K4me2 and 
many H3 lysine acetylation marks. H3K27me3 is generally not enriched at enhancers except in 
embryonic stem cells such as human H1-hESC, where there is also enrichment of binding by the 
Polycomb protein EZH2. Enhancers with high H3K27ac have a higher prevalence of PolII bind-
ing in all three species, consistent with the elevated level of H3K4me3 at these sites compared to 
that in enhancers with low H3K27ac. H2A.Z is enriched in human enhancers, but the H2Av 
ortholog is not enriched in any fly samples. These configurations are likely to be correlated to the 
generation of short transcripts from these sites, as reported recently59.
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Supplementary Fig. 11.  Analysis of p300-based enhancers from human. As an additional 
validation, we repeated all key analyses in human cell lines using the population of p300-based 
enhancers; the general trends remain the same as found for the DHS-based sites in corresponding 
human cell lines. a, Average expression of genes that are close to enhancers with high (top 40%; 
red line) or low (bottom 40%; blue line) levels of H3K27ac in human cell lines. As a control, we 
analyzed TSS-distal p300 binding sites that are not classified as enhancers (dashed black). 
RPKM: reads per kilobase per million. Error bar: standard error of the mean. b, ChIP signal 
enrichment (log2 scale) of H3.3 around p300-based enhancers in human Hela-S3 cells. c, Z-score 
of average ChIP fold enrichment of some key histone modifications and chromosomal proteins 
around +/-2 kb of the center of high H3K27ac or low H3K27ac enhancers in human cell lines. 
The observed patterns at human enhancers hold even if the putative enhancers were centered at 
p300 sites instead of DHSs. 
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Supplementary Fig. 12. Relationship between sense-antisense bidirectional transcription 
and H3K4me3 at TSS. a, The majority of human expressed genes have sense-antisense bidirec-
tional transcription at the TSS. Even in the small number of TSSs with unidirectional transcrip-
tion, there is still a clear signal of bimodal H3K4me3 enrichment. The GC content pattern is the 
same as in expressed genes with unidirectional and bidirectional transcription. b, An average plot 
summarizing the results in panel A. c, Independently generated total RNA-seq data generated by 
modENCODE using fly early (2-4 hours) and late (14-16 hours) embryos support the observation 
made in fly S2 GRO-seq data that there is no evidence of strong antisense transcription at fly 
promoters.



Supplementary Fig. 13. Profiles of the well positioned nucleosome at Transcription Start Sites 
(TSSs) of protein coding genes. Nucleosome frequency profiles (as represented as Z-scores) 
around TSSs for human CD4+ T cells, fly EE and worm adults. The profiles were computed for 
highly expressed (top 20% in all three species) and lowly expressed genes (bottom 20% for fly and 
human, and bottom 40% for worm; see Methods).  The main features of the ‘classic’ nucleosome 
occupancy profile60, comprising a nucleosome-depleted region at the TSS flanked by well-
positioned nucleosomes (‘-1’, ‘+1’, etc.) are observed in expressed genes for all three organisms. 
The similarity between the profiles, especially in the context of different nucleotide compositions 
of the TSS-proximal regions across the species, underscores the importance and conservation of 
specific nucleosome placement for gene regulation..
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Supplementary Fig. 14. Nucleosome occupancy profile at TSS based on two MNase-seq 
datasets for each species. Comparison of the nucleosome occupancy profiles at TSS obtained in 
different studies. Two TSS-proximal profiles are plotted for each species: a, obtained for human 
CD4+ T-cells61,62, b, obtained for fly embryos (this study) and S2 cells63, and, c, obtained for 
worm embryos64 and whole adult organisms55. All data were uniformly processed as described in 
Methods. The nucleosomal profiles at TSS, obtained under different biochemical conditions 
(e.g., degree of chromatin digestion or salt concentration used to extract mono-nucleosomes), 
may vary substantially even for the same cell type, due to interplay between nucleosome stability 
and observed occupancy65,66. 

Supplementary Fig. 15. Association between repressive chromatin and lamina-associated 
domains (LADs). Heatmap of the enrichment of H3K9me3 and H3K27me3 in scaled LADs 
(upper panels: long LADs as defined as the 20% longest LADs; lower panel: short LADs as 
defined as the 20% shortest LADs). Each row represents H3K27me3 or H3K9me3 enrichment in 
each LAD. (H3K9me3 and H3K27me3 from IMR90, LADs from Tig3 for human; H3K9me3 
and H3K27me3 from EE, LADs from MXEMB for worm). Our examination reveals a simple 
relationship that depends on LAD size. In human fibroblasts, long LADs (> 1 Mb) tend to be 
found in H3K9me3-enriched heterochromatic regions, with sharp enrichment of H3K27me3 at 
the LAD boundaries; in contrast, short LADs (< 1 Mb) are enriched for H3K27me3 across the 
domain with a low occupancy of H3K9me3. Although LADs are generally smaller in worm, we 
observe a similar though weaker trend, with longer LADs more frequently enriched for 
H3K9me3. 
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Supplementary Fig. 16. Chromatin context in lamina-associated domains. a, Average 
profiles of H3K27me3 (NHLF in human, Kc in fly, and EE in worm) and EZH2/E(Z) (NHLF 
in human and Kc in fly) at LAD boundaries. LADs are enriched for H3K27me3 and are often 
flanked by E(Z) in fly or EZH2 (the ortholog) in human, both H3K27 methyltransferases and 
members of Polycomb Repressive Complex 2. b, Genome browser shot of the profiles fly Kc 
Lam DamID in chromosome 2L. The levels of Lam (DamID) are negative in heterochromatin 
(gray block enriched with H3K9me3 in Kc). Y-axis: log2 enrichment of Lam (DamID) 
normalized by controls (first row); log2 ChIP/input (second row) in the range of -3 and 3.
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Supplementary Fig. 17. Chromatin context in short and long lamina-associated domains (LADs) in 
three organisms. In human, long LADs tend to be localized in H3K9me3-enriched heterochromatic regions, 
with sharp enrichment of H3K27me3 at the LAD boundaries; in contrast, short LADs are enriched for 
H3K27me3 across the domain body with a low occupancy of H3K9me3. a, Example of typical patterns of 
H3K9me3 and H3K27me3 profiles of fibroblast or fibroblast-like cell lines in human long LADs (dark blue) 
and short LADs (light blue) from fibroblast Tig3. Y-axis: fold enrichment of ChIP/input in the range of 0 and 
2. The enrichment of H3K27me3 is observed at the boundaries of long LADs (red dashed). b, Relationship 
between the level of H3K9me3 enrichment in LADs and the size of LADs in human and worm. Longer 
LADs are more frequently enriched for H3K9me3. Left: heatmap of the enrichment in scaled LADs (upper: 
human; lower: worm). Each row represents H3K9me3 enrichment in each LAD, sorted by the size of LAD. 
Middle: LAD domain size. Right:  average H3K9me3 values in each LAD. Genome-wide average values are 
indicated by the green dashed lines. In human, H3K9me3 is often associated with LADs of > ~1.2 Mb. 
(Human: IMR90 for H3K9me3 and Tig3 for LADs; worm: early embryos for H3K9me3 and mixed embryos 
for LADs). c, The average enrichments in long LADs (top 20% in LAD size) and short LADs (bottom 20% in 
LAD size). In short LADs, in all three species, the levels of H3K27me3 enrichment are higher than the 
genome-wide average, whereas the levels of H3K9me3 enrichment are low. In long LADs, the levels of 
H3K9me3 enrichment are higher than the genome-wide average. ) No long LADs in the H3K9me3 hetero-
chromatic regions were reported in fly data generated from Kc167 cells using DamID43; however, this may 
reflect the specific cellular origin (plasmatocyte) of Kc167 cells67, as well as the fact that these analyses do 
not include the simple tandem repeats that constitute the majority of fly heterochromatin (Human: IMR90 for 
H3K9me3/H3K27me3 and Tig3 for LADs; fly data from Kc; worm: early embryos for 
H3K9me3/H3K27me3 and mixed embryos for LADs).
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Supplementary Fig. 18. LAD domains are late replicating. a, Distribution of late replicating 
domains and LADs across human chromosome 2 and fly chromosome 2R. Late replicating 
domains (red) are shown in human and fly cell lines by plotting the relative RPKM of BrdU-
enriched fractions from late S-phase binned across 50 kb (human) and 10 kb (fly) windows. 
 LADs for human44 and fly43 are indicated in black. b, LLADs are enriched for late replicating
 sequences and depleted of early replicating sequences. Boxplots depicting the genome-wide
 distribution of early (green) and late (red) replicating sequences in LAD and random domains for
 human and fly cell lines. Thus one consistent feature between fly and human is the association of
 LADs with late replication, which suggests that LADs generally reside in (and may promote) a
 repressive chromatin environment that impacts both transcription and DNA replication.



Supplementary Fig. 19. DNA shape conservation in nucleosome sequences. a, Consensus 
ORChID2 profiles as a measure of DNA shape (y-axis) in 146-148 bp nucleosome-associated 
DNA sequences identified by paired-end MNase-seq in human, fly and worm. A larger value of 
DNA shape (y-axis) corresponds to a wider minor groove and weaker negative charge. ORChID2 
provides a quantitative measure of DNA backbone solvent accessibility, minor groove width, and 
minor groove electrostatic potential. DNA shape analysis can reveal structural features shared by 
different sequences that are not apparent in the typical approach of evaluating mono- or di- 
nucleotide frequencies along nucleosomal DNA, since it can capture structural features in regions 
with degenerate sequence signatures. Consensus shape profiles, obtained by averaging individual 
nucleosome-bound sequences aligned by the inferred dyad position, are highly similar across 
species. b, Normalized correlation (similarity) of ORChID2 profile of individual nucleosome-
associated sequence with the consensus profile (see Methods and Supplementary Fig. 20). The 
 result indicates that the proportion of sequences that are positively correlated with the consensus
 profile is higher than would be expected by random in all three species, and this proportion is
 higher in worm than in fly and human.
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Supplementary Fig. 20. DNA shape in nucleosome sequences. a, Consensus ORChID2 
profiles in 146-148 bp nucleosome-associated DNA sequences stratified by average GC content. 
The subset of GC content sequences used here (GC: 35 % to 55 %) represents 74.4%, 65.6%, 
and 64.6% of the human, fly, and worm reads, respectively. Note that the worm dataset used here 
(GSM807109) is a representative of three independent worm MNase-seq datasets. b, An outline 
of the analysis procedure used to evaluate individual sequence DNA shape similarity to the 
consensus (upper panel) and continuous distributions of similarity scores (lower panel).



Supplementary Fig. 21. Chromatin context of broadly expressed and specifically expressed 
genes. ChIP signal enrichment (log2 scale) of different marks is plotted against gene expression 
(log2 scale) for protein coding genes with low expression variability (black points), and high 
expression variability (colored points), across cell types. ChIP signal enrichment is calculated 
over the whole gene body for H3K36me3, H3K79me2, H4K20me1 and H3K27me3, within 500 
bp of the TSS for H3K4me1 and H3K4me3, and over the gene body excluding the first 500 bp at 
the 5' end for PolII. Different columns show different cell types as labeled. The expressed gene 
cut-off of RPKM=1 is denoted with vertical dashed lines. In fly LE and worm L3, most ChIP 
enrichment and depletion signals appear to be significantly lower in specifically expressed genes. 
This observation is understood to be due to the different sensitivities of RNA-seq and ChIP-seq 
protocols when examining samples with heterogeneous cell types. Genes expressed in only a 
sub-population of the cells can be identified as expressed in RNA-seq assays, but the chromatin 
signal from the sub-population of cells with these genes actively expressed is washed out by the 
signal from the remaining cells, where these genes are silent. In human and fly cell lines and 
worm early embryos, the majority of the marks show similar enrichment and depletion patterns



for broadly and specifically expressed genes. Two particular marks show consistent differences 
in these cell types: H3K4me1 levels are observed to be on average higher in specifically 
expressed genes relative to broadly expressed genes in both species, consistent with the role of 
H3K4me1 in marking cell-type specific regulatory regions. On the other hand, H3K36me3 
levels are observed to be on average lower in specifically expressed genes relative to broadly 
expressed genes. This is consistent with previously reported results in fly Kc cells68 and worm 
early embryos69. We verified that the difference in H3K36me3 levels is not due to differences in 
gene structure such as gene length, first intron length or exon coverage (Supplementary Fig. 22; 
See Supplementary Fig. 23 for an example.) However, the differences are much larger in whole 
animals than in cell lines, suggesting that the observation may be a consequence of sampling 
mixed cell types, where a large number of transcripts could come from genes enriched for 
H3K36me3 in only a small fraction of the cells in the population. Consistent with this hypoth-
esis, chromatin signals associated with active gene expression are lower over specifically 
expressed genes compared to broadly expressed genes in these samples. It is possible that 
different modes of transcriptional regulation are being utilized, e.g., it is hypothesized that in 
worm EE, H3K36me3 marking of germline- and broadly expressed genes is carried out by the 
HMT MES-4, providing epigenetic memory of germline transcription, whereas specifically 
expressed genes are marked co-transcriptionally by the HMT MET-169. Profiling of chromatin 
patterns and gene expression in additional individual cell types is needed to test whether cellular 
heterogeneity fully accounts for our observations.
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Supplementary Fig. 22. Structure and expression of broadly and specifically expressed 
genes. Boxplots show gene expression [log2(RPKM+1)], gene length, first intron length, exon 
coverage and H3K36me3 and PolII enrichment (log2) for broadly and specifically expressed 
genes. The genes are categorized according to expression, gene length, first intron length and 
exon coverage in the four vertical panels respectively. 
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Supplementary Fig. 23. Example genome browser screenshot showing broadly and 
specifically expressed genes. The fly hth gene is specifically expressed in BG3 cells. Cell-
type-specific enrichment of H3K4me3 at the TSS and of H3K4me1 over the gene body of  hth
 is observed, whereas H3K36me3 remains low over the hth gene independent of its expression
 level.



Supplementary Fig. 24. A Pearson correlation matrix of histone marks in each cell type or devel-
opmental stage. Each entry in the matrix is the pairwise Pearson correlation between marks across the 
genome, computed using 5 kb bins across the mappable regions excluding regions with no signal at all  
(ChIP fold enrichment over input <1 for all 8 marks). This numerical matrix shows the same difference 
in H3K9me3 and H3K27me3 as reported in Extended Data Fig. 1c.  Note that embryonic cell/sample 
types (H1-hESC in human, LE in fly, and EE in worm) display a higher correlation between H3K4me1 
and repressive mark H3K27me3, compared to cells or samples that are more differentiated (GM12878 
and K562 in human; L3 and AH in fly; L3 in worm).
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Supplementary Fig. 25. a. (See below for legend)
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Supplementary Fig. 25. b. (See below for legend)
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Supplementary Fig. 25.  Genome-wide correlation of ChIP-seq datasets for human, fly and 
worm. a, The genome-wide correlations between chromatin marks and factors for human. Each 
entry in the heatmap shows the Pearson correlation coefficient between a pair of marks/factors, 
computed using 30-kb bins across the whole genome. The dendrogram shows the hierarchical 
clustering result based on Pearson correlation coefficients. Datasets marked with 'UW' were 
generated at the University of Washington; the rest were generated at the Broad Institute. b,c, 
The same correlation matrices for fly and worm, respectively. The resolution for calculating 
correlation is 10 kb.



0
40

80

[HFW]_Low3
[HFW]_Low2
[HFW]_Low1

[hfW]_Heterok9k27
[HFW]_Heterochromatin2
[hFW]_Heterochromatin1

[hFW]_Polycomb
[HFW]_ReprPromoter

[HFW]_Bivalent
[HFW]_Elongation2
[HFW]_Elongation1
[HFW]_IntronWeak

[HfW]_Intron
[HFw]_Elongation

[HFW]_ElonRegulatory
[hFW]_Regulatory1

[HFW]_Regulatory2
[HFW]_Regulatory4

[hFW]_Promoter
[HFW]_Regulator5

[HFW]_Low3
[HFW]_Low2
[HFW]_Low1

[hfW]_Heterok9k27
[HFW]_Heterochromatin2
[hFW]_Heterochromatin1

[hFW]_Polycomb
[HFW]_ReprPromoter

[HFW]_Bivalent
[HFW]_Elongation2
[HFW]_Elongation1
[HFW]_IntronWeak

[HfW]_Intron
[HFw]_Elongation

[HFW]_ElonRegulatory
[hFW]_Regulatory1

[HFW]_Regulatory2
[HFW]_Regulatory4

[hFW]_Promoter
[HFW]_Regulator5

16 Low
 signal 3

15 Low
 signal 2

14 Low
 signal 1

13 H
eterochrom

atin 2
12 H

eterochrom
atin 1

11 P
C

 repressed 2
10 P

C
 repressed 1

9 T
ranscription 3', 3

8 T
ranscription 3', 2

7 T
ranscription 3', 1

6 G
ene, H

4K
20m

e1
5 T

ranscription 5', 2
4 T

ranscription 5', 1
3 E

nhancer 2
2 E

nhancer 1
1 P

rom
oter

16 Low
 signal 3

15 Low
 signal 2

14 Low
 signal 1

13 H
eterochrom

atin 2
12 H

eterochrom
atin 1

11 P
C

 repressed 2
10 P

C
 repressed 1

9 T
ranscription 3', 3

8 T
ranscription 3', 2

7 T
ranscription 3', 1

6 G
ene, H

4K
20m

e1
5 T

ranscription 5', 2
4 T

ranscription 5', 1
3 E

nhancer 2
2 E

nhancer 1
1 P

rom
oter

16 Low
 signal 3

15 Low
 signal 2

14 Low
 signal 1

13 H
eterochrom

atin 2
12 H

eterochrom
atin 1

11 P
C

 repressed 2
10 P

C
 repressed 1

9 T
ranscription 3', 3

8 T
ranscription 3', 2

7 T
ranscription 3', 1

6 G
ene, H

4K
20m

e1
5 T

ranscription 5', 2
4 T

ranscription 5', 1
3 E

nhancer 2
2 E

nhancer 1
1 P

rom
oter

H
3K

4m
e3

H
3K

4m
e1

H
3K

27
ac

H
3K

79
m

e2
H

4K
20

m
e1

H
3K

36
m

e3
H

3K
27

m
e3

H
3K

9m
e3

[HFW]_Low3
[HFW]_Low2
[HFW]_Low1
[hfW]_Heterok9k27
[HFW]_Heterochromatin2
[hFW]_Heterochromatin1
[hFW]_Polycomb
[HFW]_ReprPromoter
[HFW]_Bivalent
[HFW]_Elongation2
[HFW]_Elongation1
[HFW]_IntronWeak
[HfW]_Intron
[HFw]_Elongation
[HFW]_ElonRegulatory
[hFW]_Regulatory1
[HFW]_Regulatory2
[HFW]_Regulatory4
[hFW]_Promoter
[HFW]_Regulator5

0 0.6 1

a

b

H
um

an H
1

H
um

an G
M

12878

F
ly LE

F
ly L3

W
orm

 E
E

W
orm

 L3
hiHMM

S
eg

w
ay

[HFW]_Low3
[HFW]_Low2
[HFW]_Low1

[hfW]_Heterok9k27

Supplementary Fig. 26. Comparison of chromatin 
state maps generated by hiHMM and Segway. a, 
Histone modification enrichment in each of the 20 chro-
matin states (i.e., emission matrix) identified by Segway. 
Color represents relative enrichment of a histone mark 
(scaled between 0 and 1). Letters in brackets preceding 
each state name indicate coverage within each species (H: 
human, F: fly, W: worm; upper case: high coverage, 
lower case: low coverage). In general, Segway identified 
similar types of states as hiHMM (Fig. 2). b, This figure 
shows the percentage of each hiHMM region that is 
occupied by each Segway state. The blue-red color bar 
shows percentage of overlap. There is a strong overlap 
between certain hiHMM-states and certain Segway states, 
indicating the identification of analogous states. For 
example, the Promoter state in hiHMM (state 1) strongly 
overlaps with Segway state "[hFW]_Promoter". Thus the 
two algorithms give largely concordant results.
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Supplementary Fig. 27. Comparison of chromatin state maps generated by hiHMM and 
ChromHMM. a, Histone modification enrichment in each of the 19 chromatin states (i.e., emis-
sion matrix) identified by ChromHMM. Color represents emission probability given the enrich-
ment of a histone mark. In general, ChromHMM identified similar types of states as did hiHMM 
(Fig. 2).  b, This figure shows the percentage of each hiHMM region that is occupied in each 
ChromHMM state. The blue-red color bar shows percentage of overlap. There is a strong overlap 
between certain hiHMM-states and certain ChromHMM states, indicating analogous states. For 
example, the Promoter state in hiHMM (state 1) strongly overlap with ChromHMM states "Active 
promoter" and more weakly with "Active promoter flanking". Thus the two algorithms give largely 
concordant results.
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Supplementary Fig. 28. Comparison of hiHMM-based chromatin state model with 
species-specific models. The fly hiHMM segmentations for LE and L3 were compared to the 
9-state model established for fly S2 and BG3 cell lines by Kharchenko11 et al. The human 
hiHMM segmentations for GM12878 and H1-hESC were compared to their respective chroma-
tin maps produced by ChromHMM49. The color bar shows the percentage of a given hiHMM 
states that is occupied by each species-specific model state. Our chromatin state maps are in 
agreement with existing species-specific chromatin maps for human49 and fly11, even though 
these state maps were generated using a different number of histone marks and different cell 
types.
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Supplementary Fig. 29. Distribution of genomic features in each hiHMM-based chroma-
tin state. Each entry in the heatmap represents the relative enrichment of that state in a given 
genomic feature. The scale was normalized between 0 to 1 for each column. In general, similar 
combinations of histone marks are enriched in each state across the three species (Fig. 2), and 
each state is enriched for similar genomic features (above).
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Supplementary Fig. 30. Enrichment of 
chromosomal proteins in individual chro-
matin states generated by hiHMM. ChIP 
enrichment Z-scores computed based on 
genome-wide mean and standard deviation, for 
individual non-histone proteins in human 
H1-hESC and GM12878, fly late embryo (LE) 
and third instar larvae (L3) and worm early 
embryo (EE), mixed embryo (MxE) and larvae 
stage 3 (L3). 
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Supplementary Fig. 31. 
Enrichment of transcrip-
tion factor binding sites in 
individual chromatin 
states generated by 
hiHMM. Each entry in the 
heatmap represents the 
relative enrichment of that 
state in the entire set of TF 
binding sites. ChIP enrich-
ment scaled from 0 to 1, for 
individual transcription 
factors in human H1-hESC 
and GM12878, fly third 
instar larvae (L3) and worm 
larvae stage 3 (L3). Most 
transcription factors are 
associated either with the 
promoter states or with Pc 
repression 1, but some are 
broadly distributed. Note 
that many transcription 
factors are associated with 
state 10, PC Repressed 1, 
and relatively few with 
state 11, PC Repressed 2. 
This result supports that 
there are two distinct types 
of Polycomb-associated 
repressed regions: strong 
H3K27me3 accompanied 
by marks for active genes 
or enhancers (state 10) and 
strong H3K27me3 without 
active marks (state 11) (see 
Fig. 2). 
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Supplementary Fig. 32. Coverage by hiHMM-based states in mappable regions of individual 
chromosomes in human (a), fly (b), and worm (c). Fly annotated heterochromatic arms 
(chr2LHet, chr2RHet, chr3LHet, chr3RHet and chrXHet) are disproportionally enriched for 
heterochromatin states and "Low signal 3" state, which is consistent with our understanding of the 
marks enriched in these regions. Similarly, chromosome four is enriched in heterochromatin. 
Furthermore, in worm, a higher proportion of chrX is covered by the H4K20me1-enriched state 6 
in L3 compared to EE, which is consistent with the role of H4K20me1 in worm chrX dosage 
compensation at L3.
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Supplementary Fig. 33. Heterochromatin domains defined based on H3K9me3-enrichment 
in worm, fly and human. H3K9me3 profiles from worm L3 (upper), fly L3 (middle) and human 
H1-hESC (bottom) in heatmaps and the identified heterochromatic regions (enriched for 
H3K9me3; green) are shown. For human, examples are shown for selected chromosomes. Note 
centromeric regions of human chromosomes are poorly assembled (regions marked with grey 
above H3K9me3 enrichment heatmap). Significantly enriched regions are determined using a 
Poison model for ChIP and input tag distributions with a window size of 10 kb (fly and worm) or 
100 kb (human), using SPP31 (see Methods). The majority of the H3K9me3-enriched domains in 
fly L3 and human H1-hESC are concentrated in the pericentric regions, while in worm L3 they 
are distributed in subdomains throughout the chromosome arms.
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Supplementary Fig. 34. Borders between pericentric heterochromatin and euchromatin in 
Fly L3 from this study compared to those based on H3K9me2 ChIP-chip data. The screen-
shots are from near the pericentric heterochromatic regions in fly chr2R (upper), chr2L (middle) 
and chr3L (bottom). H3K9me3 ChIP-seq profiles (ChIP/input fold enrichment) are shown in the 
top rows. Heterochromatin (Het) calls, the regions identified as significantly enriched for 
H3K9me3 with a 10 kb window, are shown in the middle (see Methods). The end or start sites of 
continuous H3K9me3 enrichment regions are marked with red triangles. Blue triangles indicate 
identified borders between pericentric heterochromatin and euchromatin from Riddle et al.14 
based on H3K9me2 ChIP-chip profiles. The boundaries between pericentric heterochromatin 
and euchromatin on each fly chromosome are consistent with those from the lower resolution 
studies using H3K9me2.
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Supplementary Fig. 36. Gene body plots of several histone modifications for euchromatic and 
heterochromatic genes. Heterochromatic genes are defined as genes in H3K9me3-enrichment regions 
detected with 10 kb (fly and worm) or 100 kb (human) window (see Methods). Expressed or silent genes 
are defined using RNA-seq data (see Methods; human K562, fly L3 and worm L3). For human and fly, 
H3K9me3 is depleted at the TSS of expressed genes in the heterochromatic regions. In worm, H3K9me3 
is predominantly confined to gene bodies, with overall lower levels in promoter regions.
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Supplementary Fig. 37. The chromatin state map around three examples of expressed genes in or 
near heterochromatic regions in human GM12878 cells, fly L3, and worm L3. Expressed genes are 
enriched for H3K4me3 (state 1, red) at their promoters and exhibit a transcription state across the body 
of the gene. While H3K9me3 is a hallmark of heterochromatin in all three species (resulting in a 
heterochromatin state across the body of the gene in this domain; states 12-13, grey), H3K27me3 is 
also enriched in worm heterochromatin.
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Supplementary Fig. 38. Chromatin context of topological domain boundaries. Observed 
occurrences of chromatin states near Hi-C defined topological domain boundaries normalized 
to random expectation. The two species generally show similar enrichment of active states near 
domain boundary and depletion of low signal and heterochromatin states. In human H1-hESC, 
the Pc repressed 1 state, which largely marks bivalent regions, is also observed to be enriched 
near domain boundaries.
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Supplementary Fig. 39. Classification of topological domains based on chromatin states. Coverage 
of chromatin states (rows) in individual topological domains (columns) is shown as a heatmap for fly 
late embryos and human H1-hES cells. Chromatin states are clustered according to their co-occurrence 
correlations in topological domains to identify the labeled meta-chromatin states. (Active Transcription, 
Active Enhancer, Active Intron-rich, Pc Repressed, Heterochromatin, and Low Signal domains). The 
topological domains are classified according to the dominant meta state in the domain. The clustering of 
chromatin states is observed to be generally similar in the two species. One notable exception is that the 
H4K20me1-enriched state 6 is found in Polycomb repressed domains in human, whereas the same state 
is enriched in introns of long active genes in fly. These long genes are observed to define a relatively 
distinct group of topological domains. The distributions of domain sizes and expression levels of genes 
for the different topological domain classes are also presented as boxplots. Active domains are observed 
to be smaller in size in both species: in fly LE, 377 (32%) domains are identified as active covering 15% 
of the fly genome and containing 43% of all active genes (RPKM>1). In human H1-hESC, 736 (24%) 
domains are identified as active covering 16% of the human genome and contain 47% of all active genes 
(RPKM>1).
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Supplementary Fig. 40. Similarity between fly histone modification domains/boundaries 
and Hi-C. a, We used the fly histone-modification-defined (HM) boundaries to divide the fly 
genome into HM domains. We defined fly HM domain as the genomic region in between 
middle points of two nearby HM boundaries. Fly HM domains (red line) have the same size 
distribution as Hi-C domains (orange line), with a peak at about 50 kb and a long right tail. b, 
In order to show the significant overlap between boundaries defined from HM and Hi-C, we 
generated random boundaries through random shuffling while keeping the same domain size 
distribution for each chromosome. We generated random boundaries for 100 times. We then 
searched for Hi-C boundaries around HM and around random boundaries (left), as well as for 
HM boundaries around Hi-C and around random boundaries (right). Blue line is plotted as the 
average of 100 random boundary sets. Significant overlap between HM and Hi-C boundaries 
compared to random background is supported by a Wilcoxon test with p-value less than 10-6.
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Supplementary Fig. 41. A chromosomal view of the chromatin-based topological domains in worm 
early embryos at chromosome IV. Similar to Fig 3c, we generated chromatin-based topological 
domains in worm early embryos. Local histone modification similarity (Euclidian distance) is presented 
as a heatmap. Red indicates higher similarity and blue indicates lower similarity. Chromatin-defined 
boundary scores, boundaries and domains locations are compared to histone marks in the same chromo-
somal regions. There is no available Hi-C data in worm that could be used for direct comparison. None-
theless, the enrichment of H3K4me3 and H3K36me3 at the predicted boundaries is reminiscent of what 
is observed in Hi-C topological boundaries in human and fly (Supplementary Figs. 38, 39). This analy-
sis supports the idea that domain prediction based on genome-wide similarities of histone modifications 
may be used to discover large-scale topological domains without the need for HiC data.
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Supplementary Fig. 42.  Chromatin context of chromatin-based topological domain boundaries. 
Observed occurrences of chromatin states near histone marks defined domain boundaries normalized to 
random expectation. Fly late embryos, worm early embryos, fly and worm L3 larvae show enrichment 
of promoter and active transcription states near domain boundaries and depletion of low signal and 
heterochromatin states, similar to the observation at Hi-C boundaries (see Supplementary Fig. 38).
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Supplementary Table 1. Abbreviation used key cell types and developmental stages 
described in this study. 

Species Abbreviation Description 

C. elegans 

EE Early embryos 
MXEMB Mixed embryos 
LTEMB Late embryos 
L3 Stage 3 larvae 
L4 Stage 4 larvae 

AD no embryos 
Feminized adults that produce oocytes but no sperm, and therefore 
do not contain embryos (fem-2(b245ts) strain) 

 AD germline 
Purified germline nuclei from wildtype hermaphrodites (ojIs9 
strain carrying zyg-12::gfp transgene) 

 AD-germlineless AD without germline (glp-4(bn2ts) strain) 

D. melanogaster 

EE Early embryos (2-4hr) 
LE Late embryos (14-16hr) 
L3 Third instar larvae  
AH Adult heads 
ES5,ES10,ES14 Embryonic stages 5, 10, and 14, respectively 
S2 S2-DRSC cell line: derived from late embryonic stage 
Kc Kc157 cell line: dorsal closure stage 
BG3 ML-DmBG3-c2 cell line: central nervous system, derived from L3 
Clone 8 CME W1 Cl.8+ cell line: dorsal mesothoracic disc 

H. sapiens 

H1-hESC Embryonic stem cells 
GM12878 B-lymphocytes 
K562 Myelogenous leukemia cell line 
A549 Epithelial cell line derived from a lung carcinoma tissue 
HeLa-S3 Cervical carcinoma cell line 
HepG2 Hepatocellular carcinoma 
HSMM Skeletal muscle myoblasts 
HSMMtube Skeletal muscle myotubes differentiated from the HSMM cell line 
HUVEC Human umbilical vein endothelial cells 
IMR90 Fetal lung fibroblasts 
NH-A Astrocytes 
NHDF-Ad Adult dermal fibroblasts 
NHEK Epidermal keratinocytes 
NHLF Lung fibroblasts 
Osteobl Osteoblasts (NHOst) 

More information on the cell types and stages can be found at the project websites: 

Details of D. melanogaster cell lines: https://dgrc.cgb.indiana.edu/project/index.html 

Details of H. sapiens: http://encodeproject.org/ENCODE/cellTypes.html
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Supplementary Table 2. List of protein names used in this study. 
 

Name used 
Official name Name 

used 
Official name Name 

used 
Official name 

human fly worm human fly worm human fly worm 
CHD1 CHD1     CBX2 CBX2      AMA-1   AMA-1 

CHD2 CHD2      CBX3 CBX3       ASH-2     ASH-2 

CHD3/MI-2/LET-418 CHD3 MI-2 LET-418 CBX8 CBX8      CEC-3   CEC-3 

CBP/CBP-1 CREBBP CBP CBP-1 CEBPB CEBPB       CEC-7     CEC-7 

CTCF CTCF CTCF    CHD7 CHD7      COH-1   COH-1 

EZH2/E(Z) EZH2 E(Z)    CTCFL CTCFL       COH-3     COH-3 

HDAC1/RPD3/HAD-1 HDAC1 RPD3 HDA-1 REST REST      DPL-1   DPL-1 

HP1A   SU(VAR)205    SAP30 SAP30       EFL-1     EFL-1 

HP1B/HPL-2  HP1B HPL-2 SIRT6 SIRT6      EPC-1   EPC-1 

HP1C   HP1C    NCOR NCOR1       HCP-3     HCP-3 

HP2  HP2    NSD2 WHSC1      HCP-4   HCP-4 

HP4   HP4    P300 EP300       HIM-17     HIM-17 

KDM1A KDM1A SU(VAR)3-3    PCAF KAT2B      HIM-3   HIM-3 

KDM2   KDM2 T26A5.5 PHF8 PHF8       HIM-5     HIM-5 

KDM4A KDM4A KDM4A    RBBP5 RBBP5      HIM-8   HIM-8 

KDM5A KDM5A       ACF1    ACF1    HTP-3     HTP-3 

KDM5B KDM5B      ASH1  ASH1    HTZ-1   HTZ-1 

KDM5C KDM5C       BEAF   BEAF-32    IMB-1     IMB-1 

RNF2/RING RNF2 SCE    CG10630  BLANKS    KLE-2   KLE-2 

HDAC11   HDACX    BRE1   BRE1    LEM-2     LEM-2 

HDAC2 HDAC2     CHRO  CHRO    LIN-35   LIN-35 

HDAC3   HDAC3    CP190   CP190    LIN-37     LIN-37 

HDAC4a  HDAC4    GAF  GAF    LIN-52   LIN-52 

HDAC6 HDAC6 HDAC6    ISWI   ISWI    LIN-53     LIN-53 

HDAC8 HDAC8     JIL-1  JIL-1    LIN-54   LIN-54 

MOD(MDG4)   MOD(MDG4)    LBR   LBR    LIN-61     LIN-61 

NURF301/NURF-1  E(BX) NURF-1 MBD-R2  MBD-R2    LIN-9   LIN-9 

PR-SET7   PR-SET7    MLE   MLE    MAU-2     MAU-2 

SMC3 SMC3 CAP    MOF  MOF    MES-4   MES-4 

SMARCA4 SMARCA4       MRG15   MRG15    MRE-11     MRE-11 

SU(HW)  SU(HW)    MSL-1  MSL-1    MIS-12   MIS-12 

SU(VAR)3-7   SU(VAR)3-7    PC   PC    MIX-1     MIX-1 

SU(VAR)3-9   SU(VAR)3-9     PCL  PCL    MRG-1   MRG-1 

SUZ12 SUZ12       PHO   PHO    MSH-5     MSH-5 

SETDB1 SETDB1      PIWI  PIWI    REC-8   REC-8 

DPY-26     DPY-26 POF   POF    RPC-1     RPC-1 

DPY-27   DPY-27 PSC  PSC    SCC-1   SCC-1 

DPY-28     DPY-28 RHINO   RHINO    SDC-1     SDC-1 

DPY-30   DPY-30 SFMBT  SFMBT    SDC-2   SDC-2 

LIN-15B     LIN-15B SPT16   DRE4    SDC-3     SDC-3 

TAG-315   TAG-315 TOP2  TOP2    SMC-4   SMC-4 

MYS3     LSY-12 WDS   WDS    SMC-6     SMC-6 

NPP-13   NPP-13 XNP  XNP    ZIM-1   ZIM-1 

PQN-85     PQN-85 ZW5   ZW5    ZIM-3     ZIM-3 

RAD-51   RAD-51 TAF-1   TAF-1 ZFP-1   ZFP-1 

           TBP-1     TBP-1 ZHP-3     ZHP-3 

 
Some of the names used in this study (highlighted in red) are different from their official 
names.  
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Supplementary Table 3. Overlap of DHS-based and p300-peak-based enhancers in 
human cell lines. The analysis generally identifies more DHS-based enhancers than 
p300-based enhancers. Between 60% and 90% of the p300-enhancers are within 500 bp 
of a DHS-based enhancer, suggesting that p300 binding sites are generally in DHSs.  

  DHS 
enhancer 

w/ p300 
enhancer 
within 100bp

w/ p300 
enhancer 
within 500bp

p300 
enhancer 

w/ DHS 
enhancer 
within 100bp 

w/ DHS 
enhancer 
within 500bp

GM12878 40531 14094 (35%) 19190 (47%) 29108 14067 (48%) 18391 (63%) 

H1-hESC 73496 1973 (3%) 3404 (5%) 3986 2007 (50%) 3139 (79%) 

K562 69865 27521 (39%) 34714 (50%) 43659 27489 (63%) 33449 (77%) 

HeLa-S3 63189 16784 (27%) 21515 (34%) 22861 16762 (73%) 20217 (88%) 
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